

THE Impact Rankings Questionnaire

University	:	Universitas Indonesia
Country	:	Indonesia
Web Address	:	www.ui.ac.id

[7] SDG7: Affordable and Clean Energy[7.4] Energy and the Community[7.4.4] Policy Development for Clean Energy Technology

Screenshot of TREC's website

Screenshot of RCCC's website

Screenshot of Rector's decree regarding projects that have won the competitive internal funding in 2019

module of comparative study of exposure to pollution and health effects for members of

Description :

Universitas Indonesia (UI) is committed to actively facilitate research activities and produce research outputs to support governments in the development of clean energy and energy-efficient technology policies. The university provides internal funding as well as partners with external entities, including governmental institutions, non-government organizations, and corporations, to support studies on this issue. UI also has three research centers: Research Center for Climate Change (RCCC), Tropical Renewable Energy Center (TREC), and Center for Sustainable Infrastructure Development (CSID), which was established in 2010, 2015, and 2014, respectively. UI's endeavors to produce affordable and clean energy is not only consistent with SDG 7 (Affordable and Clean Energy); they also intersect

with SDG 9 (Industry, Innovation, and Infrastructure), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action).

Below are examples of research projects related to policy development for clean energy technology (funded by internal and external research grant):

- 1. Clean Energy Management with Electric Vehicles on the Island of Bali, Analysis of Solar Energy (PLTS) on the Concept of Smart Building and Renewable Energy Power Plants in the Thousand Islands
- 2. Study on the Use of Renewable Energy, Local Value, and Virtual Geography for Sustainable Development

	Researchers	Project Title	SDG Focus
1	Dr. Djoni Hartono, S.Si., M.E.	Fiscal Incentives to Support Renewable Energy Investments in Indonesia: The Search for the Suitable Instruments	Affordable and Clean Energy
2	Asep Saefumillah	Phosphate Adsorption Study Using Modified Fly Ash from Coal Burning Waste and Activated Charcoal from Black Leachate Waste to Overcome Algae Bloom Phenomenon in Aquatic Systems	Affordable and Clean Energy
3	Iman Abdullah	Synthesis and Characterization of Porous Network Materials for Energy and Environmental Applications	Affordable and Clean Energy
4	Taqyuddin	Renewable Energy Development for Supporting Temperature Stability of Tourism Areas in the Islands and Pantura of West Java	Affordable and Clean Energy
5	Triarko Nurlambang	Study on the Use of Renewable Energy, Local Value, and Virtual Geography for Sustainable Development	Affordable and Clean Energy

6	Yunus	Investigating the Existence of Heat Sources Associated with the Geothermal System in the Tulehu Geothermal Prospect Area (Maluku) Using Remote Sensing, Geology and Gravity Methods	Affordable and Clean Energy
7	Ivandini Tribidasari Anggraningrum	Development of Nickel Based Materials for Applications in Renewable Energy	Affordable and Clean Energy
8	Dr. Nining Betawati Prihantini, M.Sc.	The Optimization of Biomass Propagation of Indigenous Culturable Cyanobacteria Strains from Indonesia for Biodiesel Production	Affordable and Clean Energy
9	Paulus Wirutomo	Social Acceptance Model for Geothermal Energy Development (Case Study in Baturraden PLTP Development in Banyumas Regency)	Affordable and Clean Energy
10	Abdul Halim	Optimized Design of Smart Home Energy Management System (O-SHEMS) to Support Community-Based Renewable Energy Smart Network Development	Affordable and Clean Energy
11	Kalamullah Ramli	The Development of a Blockchain-Based Peer-To-Peer Energy Network Platform	Affordable and Clean Energy
12	Iwa Garniwa	Study of the Application of Direct Load Control and Energy Saving Performance Contracts for Electrical Energy Efficiency in the Industrial and Commercial Sectors	Affordable and Clean Energy
13	Rinaldy	Clean Energy Management with Electric Vehicles on the Island of Bali, Analysis of Solar Energy (PLTS) on the Concept of Smart Building and Renewable Energy Power Plants in the Thousand Islands	Affordable and Clean Energy

14	Heri Hermansyah	Optimal Design of Biorefinery to Produce Biochemical and Bioenergy Products	Affordable and Clean Energy
15	Heri Hermansyah	Energy Recovery From Larvae Biowaste Treatment By Anaerobic Digestion	Affordable and Clean Energy
16	Muhammad Idrus Alhamid	The Development of Solar Thermal Energy for Industrial Heat Pump	Affordable and Clean Energy
17	Muhammad Idrus Alhamid	The Development of Organic Rankine Cycle (ORC) as a Power Plant using Solar Thermal Energy	Affordable and Clean Energy
18	Adi Surjosatyo	Waste to Energy: Upgrading Fixed-Bed Incinerator with Urban Solid Waste Fuel with a Capacity of 20 kW Using an Energy Value Approach	Affordable and Clean Energy
19	Nandy Setiadi Djaya Putra	The Characterization of Thermal Properties of Palm Wax / Graphene as Phase Change Material (PCM) for Thermal Energy Storage (TES) Applications	Affordable and Clean Energy

Evidence Link :

- 1. https://trec.eng.ui.ac.id/
- 2. https://csid.eng.ui.ac.id/
- 3. https://research.ui.ac.id/research/en/
- 4. <u>https://rccc.ui.ac.id/</u>
- 5. https://research.ui.ac.id/research/wp-content/uploads/2020/11/SK-476-dikompresi1.pdf
- 6. <u>https://research.ui.ac.id/research/wp-content/uploads/2020/11/List-of-UIs-research-projects-rel</u> <u>ated-to-Sustainable-Development-Goals.pdf</u>